Large time and long distance asymptotics of the thermal correlators of the impenetrable anyonic lattice gas

Eduard Naichuk¹

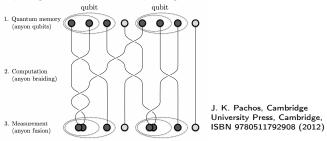
Supervisor Nikolai lorgov²

 1 Kyiv Academic University 2 Bogolyubov Institute for Theoretical Physics

July 24, 2022

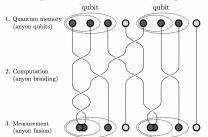
Motivation

Topological quantum computing



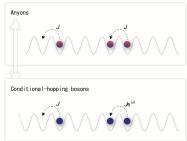
Motivation

Topological quantum computing



J. K. Pachos, Cambridge University Press, Cambridge, ISBN 9780511792908 (2012)

Systems of ultracold atoms



T. Keilmann, S. Lanzmich, I. McCulloch, and M. Roncaglia, Nature Communications 2, 361 (2011)

Bosons

Fermions

$$[a_{j}, a_{m}^{\dagger}] = \delta_{jm}$$
 $\{a_{j}, a_{m}^{\dagger}\} = \delta_{jm}$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}^{\dagger}, a_{m}^{\dagger}\} = 0$

Bosons

Fermions

$$[a_{j}, a_{m}^{\dagger}] = \delta_{jm}$$
 $\{a_{j}, a_{m}^{\dagger}\} = \delta_{jm}$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}^{\dagger}, a_{m}^{\dagger}\} = 0$

Anyons

$$a_{j}a_{m}^{\dagger} = \delta_{jm} - e^{-i\pi\kappa\epsilon(j-m)}a_{m}^{\dagger}a_{j}$$

$$a_{j}a_{m} = -e^{i\pi\kappa\epsilon(j-m)}a_{m}a_{j}$$

$$a_{j}^{\dagger}a_{m}^{\dagger} = -e^{i\pi\kappa\epsilon(j-m)}a_{m}^{\dagger}a_{j}^{\dagger}$$

Fermions

$$[a_{j}, a_{m}^{\dagger}] = \delta_{jm}$$
 $\{a_{j}, a_{m}^{\dagger}\} = \delta_{jm}$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}, a_{m}\} = 0$ $\{a_{j}^{\dagger}, a_{m}^{\dagger}\} = 0$

Anyons

$$a_{j}a_{m}^{\dagger} = \delta_{jm} - e^{-i\pi\kappa\epsilon(j-m)}a_{m}^{\dagger}a_{j}$$

$$a_{j}a_{m} = -e^{i\pi\kappa\epsilon(j-m)}a_{m}a_{j}$$

$$a_{j}^{\dagger}a_{m}^{\dagger} = -e^{i\pi\kappa\epsilon(j-m)}a_{m}^{\dagger}a_{j}^{\dagger}$$

$$\epsilon(m) = m/|m|, \quad \epsilon(0) = 0,$$

 $\kappa \in [0,1]$ – statistics parameter.

$$H = -\sum_{j=1}^{L} \frac{1}{2} (a_j^{\dagger} a_{j+1} + a_{j+1}^{\dagger} a_j) + h \sum_{j=1}^{L} a_j^{\dagger} a_j,$$

$$a_{L+1} = a_L, \qquad a_{L+1}^{\dagger} = a_L^{\dagger}.$$

L – number of lattice sites

h – chemical potential

Two-point correlation function $(L \to \infty)$:

$$G(x,t) = \frac{\operatorname{Tr}[e^{-\beta H}a_{x+1}^{\dagger}(t)a_1(0)]}{\operatorname{Tr}[e^{-\beta H}]},$$

where
$$\beta = 1/T$$
, $a_x^{\dagger}(t) = e^{iHt}a_x^{\dagger}e^{-iHt}$.

Two-point correlation function ($L \to \infty$):

$$G(x,t) = \frac{\mathsf{Tr}[e^{-\beta H}a^{\dagger}_{x+1}(t)a_1(0)]}{\mathsf{Tr}[e^{-\beta H}]} = \underset{\mathsf{determinants}}{\mathsf{Fredholm}} \begin{pmatrix} x & t \\ \kappa & \beta & h \end{pmatrix}$$

Two-point correlation function $(L \to \infty)$:

$$G(x,t) = \frac{\mathsf{Tr}[e^{-\beta H}a^{\dagger}_{x+1}(t)a_1(0)]}{\mathsf{Tr}[e^{-\beta H}]} = \begin{array}{c} \mathsf{Fredholm} \\ \mathsf{determinants} \end{array} \begin{pmatrix} x & t \\ \kappa & \beta & h \end{pmatrix}$$

 For large x and t it is difficult to compute Fredholm determinants numerically;

Two-point correlation function $(L \to \infty)$:

$$G(x,t) = \frac{\mathsf{Tr}[e^{-\beta H}a^{\dagger}_{x+1}(t)a_1(0)]}{\mathsf{Tr}[e^{-\beta H}]} = \begin{array}{c} \mathsf{Fredholm} \\ \mathsf{determinants} \end{array} \begin{pmatrix} x & t \\ \kappa & \beta & h \end{pmatrix}$$

- For large x and t it is difficult to compute Fredholm determinants numerically;
- One need to find more effective ways to study asymptotics.

To specify the effective form factor we require two smooth periodic functions $\nu(k)$, g(k). Here L is regarded as a system size.

 The first one is called the effective phase shift and defines the shifted set of momenta as solutions of

$$e^{ikL}=e^{-2\pi i \nu(k)}, \quad e^{iqL}=1.$$

To specify the effective form factor we require two smooth periodic functions $\nu(k)$, g(k). Here L is regarded as a system size.

 The first one is called the effective phase shift and defines the shifted set of momenta as solutions of

$$e^{ikL} = e^{-2\pi i \nu(k)}, \quad e^{iqL} = 1.$$

• The second function is in the definition of effective form factors

$$|\langle \mathbf{k} | \mathbf{q}^{(a)} \rangle|^2 = L^{1-2L} \prod_{i=1}^{L} \frac{e^{\mathbf{g}(k_j) - \mathbf{g}(q_j)} \sin^2 \pi \nu(k_j)}{1 + \frac{2\pi}{L} \nu'(k_j)} e^{\mathbf{g}(q_a)} \det^2 D^a,$$

where

$$\det\!D^a = \begin{vmatrix} \cot\frac{k_1-q_1}{2} & \dots & \cot\frac{k_L-q_1}{2} \\ \vdots & \ddots & \vdots \\ \cot\frac{k_1-q_L}{2} & \dots & \cot\frac{k_L-q_L}{2} \\ 1 & \dots & 1 \end{vmatrix},$$

$$q^{(a)} = \{q_1, \dots, q_{a-1}, q_{a+1}, \dots, q_L\}, \quad a=1,\dots,L.$$

6/12

The tau (correlation) function is defined as series over these form factors

$$\tau(x,t) = \sum_{\mathsf{q}^a} |\langle \mathsf{k} | \mathsf{q}^a \rangle|^2 e^{-ix(P(\mathsf{k}) - P(\mathsf{q}^a)) + it(E(\mathsf{k}) - E(\mathsf{q}^a))},$$

where

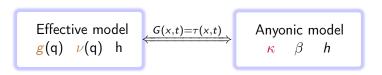
$$P(q) = \sum_{q \in q} q, \quad E(q) = \sum_{q \in q} \varepsilon(q), \quad \varepsilon(q) = h - \cos q.$$

$$\tau(x,t) = \begin{cases} \text{Fredholm} & x & t \\ \text{determinants} & g(q) & \nu(q) & h \end{cases}$$

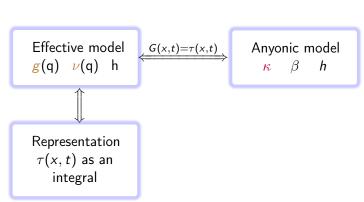
Effective model $g(q) \quad \nu(q) \quad h$

Anyonic model $\kappa \quad \beta \quad h$

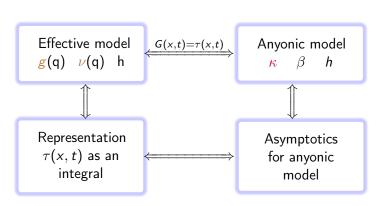
$$\tau(x,t) = \begin{cases} \text{Fredholm} & x & t \\ \text{determinants} & g(q) & \nu(q) & h \end{cases}$$



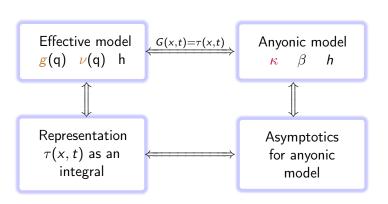
$$\tau(x,t) = \begin{array}{c} \text{Fredholm} & \left(\begin{array}{c} x & t \\ \\ \text{g}(q) & \nu(q) \end{array} \right) \end{array}$$



$$\tau(x,t) = \begin{array}{c} \text{Fredholm} & \left(\begin{array}{c} x & t \\ \\ \text{g}(q) & \nu(q) \end{array} \right) \end{array}$$



$$\tau(x,t) = \begin{array}{c} \text{Fredholm} & \left(\begin{array}{c} x & t \\ g(q) & \nu(q) \end{array}\right) \end{array}$$
 determinants



O. Gamayun, N. lorgov, and Y. Zhuravlev, Effective free-fermionic form factors and the XY spin chain, SciPostPhys. 10, 70 (2021).

Results

Space-like region (x > t), $x \gg 1$, $t \gg 1$

$$G(x,t) \approx C_2 K(x,t) e^{-x \log z_0 + \frac{t\pi}{\beta}(1-\kappa)}$$

where K(x, t) and z_0 are given by

$$egin{aligned} K(x,t) &= Z^2[
u]e^{ix\int_{-\pi}^{\pi}
u(q)dq}, &
u(q) &=
u_+(q), \
onumber \
u_\pm(q) &= \pm rac{1}{2\pi i}\log\left(1 + n_F(q)(e^{\pm i\pi\kappa} - 1)
ight), \
onumber \
onumber$$

The prefactors $Z^2[\nu]$ and C_2 are constants for fixed x/t.

Results

Time-like region (x < t), $x \gg 1$, $t \gg 1$

$$G(x,t)pprox R_{\infty}t^{-\delta_1^2-\delta_2^2}e^{i\int_{-\pi}^{\pi}(x-tarepsilon'(q))
u(q)dq} \ imes \left(rac{a_1e^{-ixq_1+itarepsilon(q_1)}}{t^{rac{1}{2}+\delta_1}}+rac{a_2e^{-ixq_2+itarepsilon(q_2)}}{t^{rac{1}{2}+\delta_2}}
ight)$$

The critical momenta q_1 and q_2 are defined by

$$q_1 = \arcsin(x/t), \qquad q_2 = \pi - \arcsin(x/t),$$

the effective phase shift $\nu(q)$ is piecewise function

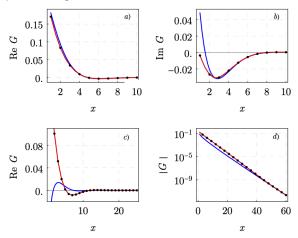
$$u(q) = egin{cases}
u_+(q) & \text{if } -\pi < q < q_1 \text{ or } q_2 < q \leq \pi, \\
u_-(q) & \text{if } q_1 < q < q_2,
\end{cases}$$

and δ_1 and δ_2 are the magnitudes of jumps of $\nu(q)$ at critical momenta

$$\delta_1 = \nu_-(q_1) - \nu_+(q_1), \quad \delta_2 = \nu_+(q_2) - \nu_-(q_2).$$

Results

Asymptotics for space-like region



Black dots – numerical values of Fredholm determinants, blue lines – asymptotics. Panels a) and b) correspond to x/t=2.5, panels c) and d) correspond to x/t=1.3. $\kappa=0.6$, h=0.7, $\beta=2.3$.

Conclusions

- Asymptotic behaviour of the correlation function at large time and long distance in both space-like and time-like regions was derive;
- It was found that on top of the exponential decay the additional power factor appears in the time-like region.

Conclusions

- Asymptotic behaviour of the correlation function at large time and long distance in both space-like and time-like regions was derive;
- It was found that on top of the exponential decay the additional power factor appears in the time-like region.

Y. Zhuravlev, E. Naichuk, N. lorgov and O. Gamayun, Large-time and long-distance asymptotics of the thermal correlators of the impenetrable anyonic lattice gas, Phys. Rev. B 105, 085145 (2022)

Thank you for your attention!